Skip to main content

Advertisement

Log in

The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Rivers are the primary contributors of iron and other elements to the global oceans. Iron-reducing bacteria play an important biogeochemical role in coupling the iron and carbon redox cycles. However, the extent of changes in community structures and iron-reduction activities of iron-reducing bacteria in riverine and coastal marine sediments remains unclear. This study presents information on the spatial patterns and relative abundance of iron-reducing bacteria in sediments of the Yellow River estuary and the adjacent Bohai Sea. High-throughput sequencing of bacterial 16S rRNA found that the highest relative abundances and diversities were from the estuary (Yellow River–Bohai Sea mixing zone). Pseudomonas, Thiobacillus, Geobacter, Rhodoferax, and Clostridium were the most abundant putative iron-reducing bacteria genera in the sediments of the Yellow River. Vibrio, Shewanella, and Thiobacillus were the most abundant in the sediments of the Bohai Sea. The putative iron-reducing bacterial community was positively correlated with the concentrations of total nitrogen and ammonium in coastal marine sediments, and was significantly correlated with the concentration of nitrate in river sediments. The riverine sediments, with a more diverse iron-reducing bacterial community, exhibited increased activity of Fe(III) reduction in enrichment cultures. The estuary-wide high abundance of putative iron-reducing bacteria suggests that the effect of river–sea interaction on bacterial distribution patterns is high. The results of this study will help the understanding of the biogeochemical cycling of iron in riverine and coastal marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bertel D, Peck J, Quick TJ, Senko JM (2011) Iron transformations induced by an acid-tolerant Desulfosporosinus species. Appl Environ Microbiol 78:81–88

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Mccammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, Mcmeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, KuczynskiJ Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coates JD, Phillips EJ, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE (2011) Repeated anaerobic microbial redox cycling of iron. Appl Environ Microbiol 77:6036–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla VE, Suvorova EI, Maillard J, Bernierlatmani R (2014) Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. Geobiology 12:48–61

    Article  CAS  Google Scholar 

  • Ding LJ, Su JQ, Xu HJ, Jia ZJ, Zhu YG (2015) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME J 9:721–734

    Article  CAS  PubMed  Google Scholar 

  • Emerson D (2009) Potential for iron-reduction and iron-cycling in iron oxyhydroxide-rich microbial mats at Loihi Seamount. Geomicrobiol J 26:639–647

    Article  CAS  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  CAS  PubMed  Google Scholar 

  • Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78:4386–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esther J, Sukla LB, Pradhan N, Panda S (2015) Fe(III) reduction strategies of dissimilatory iron reducing bacteria. Korean J Chem Eng 32:1–14

    Article  CAS  Google Scholar 

  • Feng Y, Yu Y, Tang H, Zu Q, Zhu J, Lin X (2015) The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone. Environ Pollut 197:195–202

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Obraztova A, Stewart N, Popa R, Fredrickson JK, Tiedje JM, Nealson KH, Zhou J (2006) Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol 56:1911–1916

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, Fredrickson JK, Tiedje JM, Zhou J (2009) Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J 3:966–976

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Yu Z, Yao Q, Chen H, Mi T, Tan J (2015) Seasonal variation and sources of dissolved nutrients in the Yellow River, China. Int J Environ Res Public Health 12:9603–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haaijer SC, Crienen G, Jetten MS, den Camp HJO (2012) Anoxic iron cycling bacteria from an iron sulfide- and nitrate-rich freshwater environment. Front Microbiol 3:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5:191–237

    Article  CAS  Google Scholar 

  • Jones JG, Gardener S, Simon BM (1984) Reduction of ferric iron by heterotrophic bacteria in lake sediments. Microbiology 130:45–51

    Article  CAS  Google Scholar 

  • Kanso S, Greene AC, Patel BK (2002) Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874

    CAS  PubMed  Google Scholar 

  • Kim SJ, Koh DC, Park SJ, Cha IT, Park JW, Na JH, Roh Y, Ko KS, Kim K, Rhee SK (2012) Molecular analysis of spatial variation of iron-reducing bacteria in riverine alluvial aquifers of the Mankyeong River. J Microbiol 50:207–217

    Article  CAS  PubMed  Google Scholar 

  • Laufer K, Nordhoff M, Røy H, Schmidt C, Behrens S, Jørgensen BB, Kappler A (2015) Co-existence of microaerophilic, nitrate-reducing, and phototrophic Fe(II)-oxidizers and Fe(III)-reducers in coastal marine sediment. Appl Environ Microbiol 82:1433–1447

    Article  PubMed  Google Scholar 

  • Li SN, Wang GX, Deng W, Hu YM, Hu WW (2009) Influence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta. Ecol Eng 35:1719–1726

    Article  Google Scholar 

  • Li X, Hou L, Liu M, Zheng Y, Yin G, Lin X, Cheng L, Li Y, Hu X (2015) Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ Sci Technol 49:11560–11568

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang W, Liu T, Chen L, Chen P, Li F (2016) Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biol Biochem 94:70–79

    Article  CAS  Google Scholar 

  • Liu SM, Zhang J, Jiang WS (2003) Pore water nutrient regeneration in shallow coastal Bohai Sea, China. J Oceanogr 59:377–385

    Article  CAS  Google Scholar 

  • Lovley D (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes, Theprokaryotes. Springer, New York, pp 635–658

    Google Scholar 

  • Lovley DR, Phillips EJ (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJ (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley D, Coates DJ, Ellis DJ, Gaw CV (1999) Geothrix ferrnentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622

    Article  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    Article  PubMed  Google Scholar 

  • MacDonald DJ, Findlay AJ, McAllister SM, Barnett JM, Hredzak-Showalter P, Krepski ST, Cone SG, Scott J, Bennett SK, Chan CS (2014) Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environ Sci Processes Impacts 16:2117–2126

    Article  Google Scholar 

  • Mcbeth JM, Fleming EJ, Emerson D (2013) The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. Environ Microbiol Rep 5:453–463

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Sato M, Hoshii D, Amano-Murakami Y, Iwatsuki T, Mandernack KW (2006) Isolation and characterization of Pseudomonas strains capable of Fe(III) reduction with reference to redox response regulator genes. Geomicrobiol J 23:145–155

    Article  CAS  Google Scholar 

  • Nealson K, Myers C, Wimpee B (1991) Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res Part A 38:S907–S920

    Article  Google Scholar 

  • Pan G, Krom MD, Zhang M, Zhang X, Wang L, Dai L, Sheng Y, Mortimer RJ (2013) Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China). Environ Sci Technol 47:9685–9692

    Article  CAS  PubMed  Google Scholar 

  • Peng QA, Shaaban M, Wu Y, Hu R, Wang B, Wang J (2016) The diversity of iron reducing bacteria communities in subtropical paddy soils of China. Appl Soil Ecol 101:20–27

    Article  Google Scholar 

  • Pérez-Rodríguez I, Rawls M, Coykendall DK, Foustoukos DI (2016) Deferrisoma palaeochoriense sp. nov., a thermophilic, iron(III)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea. IntJ Syst Evol Microbiol 66:830–836

    Article  CAS  Google Scholar 

  • Perry K, Kostka J, Luther G III, Nealson K (1993) Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259:801

    Article  CAS  PubMed  Google Scholar 

  • Poulton S, Raiswell R (2002) The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am J Sci 302:774–805

    Article  CAS  Google Scholar 

  • Qiao S, Yang Z, Pan Y, Guo Z (2007) Metals in suspended sediments from the Changjiang (Yangtze River) and Huanghe (Yellow River) to the sea, and their comparison. Estuar Coast Shelf Sci 74:539–548

    Article  CAS  Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:457–459

    Article  Google Scholar 

  • Roden EE, McBeth JM, Blöthe M, Percak-Dennett EM, Fleming EJ, Holyoke RR, Luther GW III, Emerson D, Schieber J (2012) The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbiol 3:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ (2006) Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. strain PV-4. Appl Environ Microbiol 72:3236–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand W (1989) Ferric iron reduction by Thiobacillus ferrooxidans at extremely low pH-values. Biogeochemistry 7:195–201

    Article  CAS  Google Scholar 

  • Sheng Y, Sun Q, Shi W, Bottrell S, Mortimer R (2015) Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China. Environ Earth Sci 74:1151–1160

    Article  CAS  Google Scholar 

  • Slobodkina GB, Reysenbach AL, Panteleeva A, Kostrikina N, Wagner I, Bonch-Osmolovskaya E, Slobodkin AI (2012) Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol 62:2463–2468

    Article  CAS  PubMed  Google Scholar 

  • Stapleton RD, Sabree ZL, Palumbo AV, Moyer CL, Devol AH, Roh Y, Zhou J (2005) Metal reduction at cold temperatures by Shewanella isolates from various marine environments. Aquat Microb Ecol 38:81–91

    Article  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugio T, Uemura S, Makino I, Iwahori K, Tano T (1994) Sensitivity of iron-oxidizing bacteria, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, to bisulfite ion. Appl Environ Microbiol 60:722–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006a) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  PubMed  Google Scholar 

  • Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE (2006b) Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ Microbiol 8:100–113

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, He Y, Feng X, Liang L, Xu J, Brookes PC, Wu J (2014) Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. Sci Total Environ 473–474:215–223

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zheng S, Ding J, Wang O, Liu F (2017) Spatial variation in bacterial community in natural wetland–river–sea ecosystems. J Basic Microbiol 57:536–546

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Zhang H, Li Y, Zhang H, Wang O, Zhang J, Liu F (2015) Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron(III)-reducing enrichment culture. Front Microbiol 6:941

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Jianhui Tang for sharing marine sediment samples. This research was supported by the National Natural Science Foundation of China (nos. 91751112, 41807325, and 41573071); the senior user project of RV KEXUE (no. KEXUE2018G01) and the Key Research Project of Frontier Science (no. QYZDJ-SSW-DQC015) of Chinese Academy of Sciences; the Natural Science Foundation (no. JQ201608 and ZR2018MD011) and the Young Taishan Scholars Program (no. tsqn20161054) of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

HZ, FL, and SZ contributed to the presented idea and design. HZ implemented the computational and statistic analyses and took the lead in writing the manuscript. XZ assisted with data analysis. FL and SZ supervised the findings of this work. All authors provided critical feedback and helped to conduct the research, analysis, and manuscript.

Corresponding authors

Correspondence to Fanghua Liu or Shiling Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Chengchao Chen.

Cite this article: Zhang H, Liu F, Zheng S, Chen L, Zhang X, Gong J (2019) The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Technol. https://doi.org/10.1007/s42995-019-00001-6.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, F., Zheng, S. et al. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Technol 2, 87–96 (2020). https://doi.org/10.1007/s42995-019-00001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-019-00001-6

Keywords

Navigation