Skip to main content
Log in

Functional analysis of the methyltransferase SMYD in the single-cell model organism Tetrahymena thermophila

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Lysine methylation of histones and non-histones plays a pivotal role in diverse cellular processes. The SMYD (SET and MYND domain) family methyltransferases can methylate various histone and non-histone substrates in mammalian systems, implicated in HSP90 methylation, myofilament organization, cancer inhibition, and gene transcription regulation. To resolve controversies concerning SMYD’s substrates and functions, we studied SMYD1 (TTHERM_00578660), the only homologue of SMYD in the unicellular eukaryote Tetrahymena thermophila. We epitope-tagged SMYD1, and analyzed its localization and interactome. We also characterized ΔSMYD1 cells, focusing on the replication and transcription phenotype. Our results show that: (1) SMYD1 is present in both cytoplasm and transcriptionally active macronucleus and shuttles between cytoplasm and macronucleus, suggesting its potential association with both histone and non-histone substrates; (2) SMYD1 is involved in DNA replication and regulates transcription of metabolism-related genes; (3) HSP90 is a potential substrate for SMYD1 and it may regulate target selection of HSP90, leading to pleiotropic effects in both the cytoplasm and the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

RNA-seq datasets have been deposited to NCBI with accession number GEO: GSE138246.

References

  • Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D (2008) The tale of two domains proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7:560–572

    CAS  PubMed  Google Scholar 

  • Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D, Couture JF (2011) Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Bol 3:301–308

    CAS  Google Scholar 

  • Adl SM, Simpson AG, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    PubMed  PubMed Central  Google Scholar 

  • Allis CD, Caparros M, Jenuwein T, Reinberg D (2015) Epigenetics, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Al-Shar’i NA, Alnabulsi SM (2016) Explaining the autoinhibition of the SMYD enzyme family: a theoretical study. J Mol Graph Model 68:147–157

    PubMed  Google Scholar 

  • Arsenault PR, Song D, Chung YJ, Khurana TS, Lee FS (2016) The zinc finger of prolyl hydroxylase domain protein 2 is essential for efficient hydroxylation of hypoxia-inducible factor α. Mol Cell Biol 36:2328–2343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachman AB, Keramisanou D, Xu W, Beebe K, Moses MA, Kumar MV, Gray G, Noor RE, van der Vaart A, Neckers L (2018) Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Nat Commun 9:265

    PubMed  PubMed Central  Google Scholar 

  • Bagislar S, Sabò A, Kress TR, Doni M, Nicoli P, Campaner S, Amati B (2016) Smyd2 is a Myc-regulated gene critical for MLL-AF9 induced leukemogenesis. Oncotarget 7:66398–66415

    PubMed  PubMed Central  Google Scholar 

  • Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    CAS  PubMed  Google Scholar 

  • Blanc RS, Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65:8–24

    CAS  PubMed  Google Scholar 

  • Boehm D, Jeng M, Camus G, Gramatica A, Schwarzer R, Johnson JR, Hull PA, Montano M, Sakane N, Pagans S (2017) SMYD2-mediated histone methylation contributes to HIV-1 latency. Cell Host Microbe 21:569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MA, Sims RJ, Gottlieb PD, Tucker PW (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:1

    Google Scholar 

  • Buuh ZY, Lyu Z, Wang RE (2017) Interrogating the roles of post-translational modifications of non-histone proteins. J Med Chem 61:3239–3252

    PubMed  Google Scholar 

  • Calpena E, Palau F, Espinós C, Galindo MI (2015) Evolutionary history of the smyd gene family in metazoans: a framework to identify the orthologs of human smyd genes in Drosophila and other animal species. PLoS ONE 10:e0134106

    PubMed  PubMed Central  Google Scholar 

  • Cao XJ, Arnaudo AM, Garcia BA (2013) Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8:477–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy-Hanley D, Bowen J, Lee JH, Cole E, VerPlank LA, Gaertig J, Gorovsky MA, Bruns PJ (1997) Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 146:135–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH, Doak TG, Stuart A, Amemiya CT, Sebra RP, Landweber LF (2014) The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158:1187–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Gao S, Liu YF, Wang YY, Wang YR, Song WB (2016) Enzymatic and chemical mapping of nucleosome distribution in purified micro-and macronuclei of the ciliated model organism, Tetrahymena thermophila. Sci China Life Sci 59:909–919

    CAS  PubMed  Google Scholar 

  • Chen Y, Tsai CH, Wang PY, Teng SC (2017) SMYD3 promotes homologous recombination via regulation of H3K4-mediated gene expression. Sci Rep 7:3842

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang YY, Sheng YL, Warren A, Gao S (2018) GPSit: an automated method for evolutionary analysis of nonculturable ciliated microeukaryotes. Mol Ecol Resour 18:700–713

    PubMed  Google Scholar 

  • Chen X, Jiang YH, Gao F, Zheng WB, Krock TJ, Stover NA, Lu C, Katz LA, Song WB (2019) Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 19:1292–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Young JM, Lin CYG, Chao JL, Malik HS, Yao MC (2016) The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Gene Dev 30:2724–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ (2004) Regulation of p53 activity through lysine methylation. Nature 432:353–360

    CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    CAS  PubMed  Google Scholar 

  • Diehl F, Brown MA, Van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, Ferrazzi F, Böttger T, Harvey RP, Tucker PW, Engel FB (2010) Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS ONE 5:e9748

    PubMed  PubMed Central  Google Scholar 

  • Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26:114–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du SJ, Tan X, Zhang J (2014) SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec 297:1650–1662

    CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epigenet Chromatin 10:23

    Google Scholar 

  • Feng LF, Wang GY, Hamilton EP, Xiong J, Yan GX, Chen K, Chen X, Dui W, Plemens A, Khadr L (2017) A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 45:9481–9502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Xiong J, Zhang CC, Berquist BR, Yang RD, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan DX, Qin ZH, Wen JF, Kapler GM, Andrews PC, Miao W, Liu YF (2013) Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 27:1662–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Warren A, Zhang QQ, Gong J, Miao M, Sun P, Xu DP, Huang J, Yi ZZ, Song WB (2016) The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6:24874

    PubMed  PubMed Central  Google Scholar 

  • Giakountis A, Moulos P, Sarris ME, Hatzis P, Talianidis I (2017) Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol 42:70–80

    CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    CAS  PubMed  Google Scholar 

  • Gordon A, Hannon G (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. Unpublished Available online at: http://hannonlab.cshl.edu/fastx_toolkit/

  • Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25–32

    CAS  PubMed  Google Scholar 

  • Guerin F, Arnaiz O, Boggetto N, Denby Wilkes C, Meyer E, Sperling L, Duharcourt S (2017) Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements. BMC Genom 18:327

    Google Scholar 

  • Guillemette B, Drogaris P, Lin HHS, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E, Thibault P, Verreault A, Festenstein RJ (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7:e1001354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6:731–740

    CAS  PubMed  Google Scholar 

  • Hamamoto R, Toyokawa G, Nakakido M, Ueda K, Nakamura Y (2014) SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett 351:126–133

    CAS  PubMed  Google Scholar 

  • Hamamoto R, Saloura V, Nakamura Y (2015) Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer 15:110–124

    CAS  PubMed  Google Scholar 

  • Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR et al (2016) Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 5:e19090

    PubMed  PubMed Central  Google Scholar 

  • Herz HM, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38:621–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LP, Zhu YT, Qi C, Zhu YJ (2009) Identification of smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res 69:4067–4072

    CAS  PubMed  Google Scholar 

  • Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444:629–632

    CAS  PubMed  Google Scholar 

  • Huang JB, Zhang TT, Zhang QQ, Li Y, Warren A, Pan HB, Yan Y (2018) Further insights into the highly derived haptorids (Ciliophora, Litostomatea): phylogeny based on multigene data. Zool Scr 47:231–242

    Google Scholar 

  • Hubert Á, Mitani Y, Tamura T, Boicu M, Nagy I (2014) Protein complex purification from Thermoplasma acidophilum using a phage display library. J Microbiol Meth 98:15–22

    CAS  Google Scholar 

  • Hughes MA, Langlais C, Cain K, MacFarlane M (2013) Isolation, characterisation and reconstitution of cell death signalling complexes. Methods 61:98–104

    CAS  PubMed  Google Scholar 

  • Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F, Reinberg D, Barlev NA (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27:6756–6769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson ME, Małecki J, Nilges BS, Moen A, Leidel SA, Falnes PØ (2017) Methylation of human eukaryotic elongation factor alpha (eEF1A) by a member of a novel protein lysine methyltransferase family modulates mRNA translation. Nucleic Acids Res 45:8239–8254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YY, Sirinupong N, Brunzelle J, Yang Z (2011) Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain. PLoS ONE 6:e21640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Liu Q, Wang YL, Zhang J, Wang HM, Song TQ, Yang ML, Wang XH, Kang L (2017) Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects. GigaScience 6:1–16

    PubMed  PubMed Central  Google Scholar 

  • Karras GI, Yi S, Sahni N, Fischer M, Xie J, Vidal M, D’Andrea AD, Whitesell L, Lindquist S (2017) HSP90 shapes the consequences of human genetic variation. Cell 168:856–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303

    CAS  PubMed  Google Scholar 

  • Lanouette S, Mongeon V, Figeys D, Couture JF (2014) The functional diversity of protein lysine methylation. Mol Syst Biol 10:724

    PubMed  PubMed Central  Google Scholar 

  • Leinhart K, Brown M (2011) SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes 2:210–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Berger SL (2017) The interplay between epigenetic changes and the p53 protein in stem cells. Genes Dev 31:1195–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li LX, Fan LX, Zhou JX, Grantham JJ, Calvet JP, Sage J, Li XG (2017) Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest 127:2751–2764

    PubMed  PubMed Central  Google Scholar 

  • Liu YF, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD (2007) RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev 21:1530–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo XT, Yan Y, Shao C, Al-Farraj SA, Bourland WA, Song WB (2018) Morphological, ontogenetic and molecular data support strongylidiids as being closely related to Dorsomarginalia (Protozoa, Ciliophora) and reactivation of the family Strongylidiidae Fauré-Fremiet, 1961. Zool J Linn Soc-Lond 184:237–254

    Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    CAS  PubMed  Google Scholar 

  • Mao FB, Liu Q, Zhao XL, Yang HN, Guo S, Xiao LY, Li XF, Teng HJ, Sun ZS, Dou YL (2018) EpiDenovo: a platform for linking regulatory de novo mutations to developmental epigenetics and diseases. Nucleic Acids Res 46:D92–D99

    CAS  PubMed  Google Scholar 

  • Mar JC, Wells CA, Quackenbush J (2011) Defining an informativeness metric for clustering gene expression data. Bioinformatics 27:1094–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, Tummino PJ, Kruger RG, Garcia BA, Butte AJ, Vermeulen M, Sage J, Gozani O (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510:283–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur PK, Gozani O, Sage J, Reynoird N (2016) Novel insights into the oncogenic function of the SMYD3 lysine methyltransferase. Transl Cancer Res 5:330–333

    CAS  PubMed  Google Scholar 

  • Miao W, Xiong J, Bowen J, Wang W, Liu Y, Braguinets O, Grigull J, Pearlman RE, Orias E, Gorovsky MA (2009) Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE 4:e4429

    PubMed  PubMed Central  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop, Institute of Electrical and Electronics Engineers, New Orleans, Louisiana

  • Moore KE, Gozani O (2014) An unexpected journey: lysine methylation across the proteome. BBA Gene Regul Mech 1839:1395–1403

    CAS  Google Scholar 

  • Noto T, Mochizuki K (2017) Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 7:170172

    PubMed  PubMed Central  Google Scholar 

  • Noto T, Kataoka K, Suhren JH, Hayashi A, Woolcock KJ, Gorovsky MA, Mochizuki K (2015) Small-RNA-mediated genome-wide trans-recognition network in Tetrahymena DNA elimination. Mol Cell 59:229–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtomo-Oda R, Komatsu S, Mori T, Sekine S, Hirajima S, Yoshimoto S, Kanai Y, Otsuji E, Ikeda E, Tsuda H (2016) SMYD2 overexpression is associated with tumor cell proliferation and a worse outcome in human papillomavirus-unrelated nonmultiple head and neck carcinomas. Hum Pathol 49:145–155

    CAS  PubMed  Google Scholar 

  • Orias E, Hamilton EP, Orias JD (1999) Tetrahymena as a laboratory organism: useful strains, cell culture, and cell line maintenance. Methods Cell Biol 62:189–211

    Google Scholar 

  • Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63:2755–2763

    CAS  PubMed  Google Scholar 

  • Ramadoss S, Guo G, Wang CY (2017) Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene 36:47–59

    CAS  PubMed  Google Scholar 

  • Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD (2015) Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS ONE 10:e0121765

    PubMed  PubMed Central  Google Scholar 

  • Sheng YL, He M, Zhao FQ, Shao C, Miao M (2018) Phylogenetic relationship analyses of complicated class Spirotrichea based on transcriptomes from three diverse microbial eukaryotes: Uroleptopsis citrina, Euplotes vannus and Protocruzia tuzeti. Mol Phylogenet Evol 129:338–345

    PubMed  Google Scholar 

  • Sima S, Richter K (2018) Regulation of the Hsp90 system. Biochem Biophys Acta 1865:889–897

    CAS  Google Scholar 

  • Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L, Yang Z (2010) Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. J Biol Chem 285:40635–40644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirinupong N, Brunzelle J, Doko E, Yang Z (2011) Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3. J Mol Biol 406:149–159

    CAS  PubMed  Google Scholar 

  • Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16:1406–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spellmon N, Sun X, Xue W, Holcomb J, Chakravarthy S, Shang W, Edwards B, Sirinupong N, Li C, Yang Z (2017) New open conformation of SMYD3 implicates conformational selection and allostery. AIMS Biophys 4:1–18

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    PubMed  Google Scholar 

  • Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, Boutros M, Perrimon N, Rosenfeld MG, Glass CK (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48:28–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strzyz P (2016) Non-coding RNA: 7SK dampens transcription at super-enhancers. Nat Rev Mol Cell Biol 17:202

    PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    CAS  PubMed  Google Scholar 

  • Thompson EC, Travers AA (2008) A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in development. PLoS ONE 3:e3008

    PubMed  PubMed Central  Google Scholar 

  • Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S (2018) The smyd family of methyltransferases: role in cardiac and skeletal muscle physiology and pathology. Curr Opin Microbiol 1:140–152

    Google Scholar 

  • Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA (2013) Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. BBA Mol Cell Res 1833:812–822

    CAS  Google Scholar 

  • Walter J, Hümpel A (2017) Introduction to epigenetics. In: Heil R, Seitz S, König H, Robienski J (eds) Epigenetics, futures of technology, science and society. Springer, Wiesbaden, pp 11–29

    Google Scholar 

  • Wang Q, Wang KY, Ye ML (2017a) Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst 142:3536–3548

    CAS  PubMed  Google Scholar 

  • Wang YR, Wang YY, Sheng YL, Huang JB, Chen X, Al-Rasheid KAS, Gao S (2017b) A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. Eur J Protistol 61:376–387

    PubMed  Google Scholar 

  • Wang YY, Chen X, Sheng YL, Liu YF, Gao S (2017c) N6-adenine DNA methylation is associated with the linker DNA of H2A. Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res 45:11594–11606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YY, Sheng YL, Liu YF, Pan B, Huang JB, Warren A, Gao S (2017d) N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. Eur J Protistol 58:94–102

    PubMed  Google Scholar 

  • Wang YR, Wang CD, Jiang YH, Katz LA, Gao F, Yan Y (2019) Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. Sci China Life Sci 62:203–214

    PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Woehrer SL, Aronica L, Suhren JH, Busch CJL, Noto T, Mochizuki K (2015) A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms. EMBO J 34:559–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak GG, Strahl BD (2014) Hitting the “mark”: interpreting lysine methylation in the context of active transcription. BBA Gene Regul Mech 1839:1353–1361

    CAS  Google Scholar 

  • Wu LP, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, Dou YL (2013) ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell 49:1108–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Lu YM, Feng JM, Yuan DX, Tian M, Chang Y, Fu CJ, Wang GY, Zeng HH, Miao W (2013) Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database. https://doi.org/10.1093/database/bat008

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Bo T, Song WB, Wang W (2019a) Metabolomic fingerprint of the model ciliate, Tetrahymena thermophila determined by untargeted profiling using gas chromatography-mass spectrometry. J Ocean Univ China 18:654–662

    CAS  Google Scholar 

  • Xu J, Li X, Song WB, Wang W, Gao S (2019b) Cyclin Cyc2 is required for elongation of meiotic micronucleus in the unicellular eukaryotic model organism Tetrahymena thermophila. Sci China Life Sci 62:668–680

    CAS  PubMed  Google Scholar 

  • Yan Y, Fan YB, Luo XT, El-Serehy HA, Bourland W, Chen XR (2018) New contribution to the species-rich genus Euplotes: morphology, ontogeny and systematic position of two species (Ciliophora; Euplotia). Eur J Protistol 64:20–39

    PubMed  Google Scholar 

  • Yi X, Jiang XJ, Li XY, Jiang DS (2017) Histone lysine methylation and congenital heart disease: from bench to bedside. Int J Mol Med 40:953–964

    CAS  PubMed  Google Scholar 

  • Zhang XD, Huang L, Wu T, Feng YF, Ding YY, Ye PF, Yin ZJ (2015) Transcriptomic analysis of ovaries from pigs with high and low litter size. PLoS ONE 10:e0139514

    PubMed  PubMed Central  Google Scholar 

  • Zhang TT, Wang CD, Laura AK, Gao F (2018) A paradox: rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protist, Ciliophora). Sci China Life Sci 61:1071–1078

    CAS  PubMed  Google Scholar 

  • Zhao XL, Wang YY, Wang YR, Liu YF, Gao S (2017) Histone methyltransferase TXR1 is required for both H3 and H3. 3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. Sci China Life Sci 60:264–270

    CAS  PubMed  Google Scholar 

  • Zhao Y, Yi ZZ, Warren A, Song W (2018) Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proc Biol Sci 285:20172159

    PubMed  PubMed Central  Google Scholar 

  • Zhao XL, Xiong J, Mao FB, Sheng YL, Chen X, Feng LF, Dui W, Yang WT, Kapusta A, Feschotte C (2019) RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 33:348–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng WB, Wang CD, Yan Y, Gao F, Doak TG, Song WB (2018) Insights into an extensively fragmented eukaryotic genome: de novo genome sequencing of the multinuclear ciliate Uroleptopsis citrina. Genome Biol Evol 10:883–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Wang JY, Lee SY, Xiong J, Bhanu N, Guo Q, Ma PL, Sun YQ, Rao RC, Garcia BA (2016) PRDM16 suppresses MLL1r leukemia via intrinsic histone methyltransferase activity. Mol Cell 62:222–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhu MX, Zhang XD, Xu XE, Wu ZY, Liao LD, Li LY, Xie YM, Wu JY, Zou HY (2016) SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma. Hum Pathol 52:153–163

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (JQ201706 to SG), Fundamental Research Funds for the Central Universities (201841013 to SG), National Science Foundation [MCB 1411565 to YL], and National Institutes of Health Foundation [R01 GM087343 to YL]. XZ was supported by China Scholarship Council Scholarship for joint PhD students. Our thanks are given to Ms. Yuanyuan Wang (Laboratory of Protozoology, Ocean University of China), for helping with the preparation of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

SG, YFL and XLZ participated in study design. XLZ carried out most of the experiments. YL conducted the establishment of HSP90-Nflag/SMYD1-CHA-overexpression strain and LLD prepared the RNA-seq samples. XC and FBM conducted the bioinformatics analysis. Manuscript writing was conducted by XLZ with assistance from SG, YFL, WBS and MJ. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Shan Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Jiamei Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, Y., Duan, L. et al. Functional analysis of the methyltransferase SMYD in the single-cell model organism Tetrahymena thermophila. Mar Life Sci Technol 2, 109–122 (2020). https://doi.org/10.1007/s42995-019-00025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-019-00025-y

Keywords

Navigation