Skip to main content
Log in

High-resolution linkage and quantitative trait locus mapping using an interspecific cross between Argopecten irradians irradians (♀) and A. purpuratus (♂)

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

The bay scallop and Peruvian scallop are economically important species. Interspecific hybrids of these two scallops outperformed both of their parent species in multiple growth traits but exhibited decreased fertility, which provides good models for the study of heterosis and species divergence. Genetic mapping serves as a chromosomal-level framework to investigate the molecular mechanisms of hybridization and introgression. In this study, high-resolution linkage maps were constructed for the bay and Peruvian scallops with an interspecific hybrid family. The linkage map of the bay scallop covered over 98.9% of the whole genome with 2994 mapped markers and the average marker interval of 0.32 cM. For the Peruvian scallop, 1585 markers were mapped with the average maker interval of 0.51 cM, covering 97.7% of the genome. Both the two linkage maps have 16 linkage groups, corresponding to the haploid chromosome number of the two species. Approximately, 54.5% of markers exhibited significant deviation from the expected Mendelian ratio of segregation, lending insights into the intrinsic incompatibility between the two species. QTLs related to growth and shell coloration were detected, which could explain 13.1% and 74.9% of the phenotypic variance, respectively. This represents important information for further evaluation. These findings are an important addition to the genomic resources for scallop genetic studies, and are especially useful for investigations on genomic incompatibility for hybridization, genome evolution of closely related species, and genetic enhancement programs in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamkewicz L, Castagna M (1988) Genetics of shell color and pattern in the bay scallop Argopecten irradians. J Hered 79:14–17

    Article  Google Scholar 

  • Barfield S, Aglyamova GV, Matz MV (2016) Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc R Soc Biol Sci 283:20152128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bath E, Bowden S, Peters C, Reddy A, Tobias J, Easton-Calabria E, Seddon N, Goodwin S, Wigby S (2017) Sperm and sex peptide stimulate aggression in female Drosophila. Nat Ecol Evol 1:0154

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  CAS  PubMed  Google Scholar 

  • Brand A (2006) Scallop ecology: distributions and behaviour. In: Shumway SE, Parsons GJ (eds) Scallops: biology, ecology, and aquaculture. Elsevier, Amsterdam, pp 651–713

    Chapter  Google Scholar 

  • Brennan A, Hiscock S, Abbott R (2014) Interspecific crossing and genetic mapping reveal intrinsic genomic incompatibility between two Senecio species that form a hybrid zone on Mount Etna, Sicily. Heredity 113:195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman K, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Book  Google Scholar 

  • Broman K, Hao W, Sen S, Churchill G (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Buonamici S, Chakraborty S, Senyuk V, Nucifora G (2003) The role of EVI1 in normal and leukemic cells. Blood Cells Mol Dis 31:206–212

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti A, Lasher L, Reefer J (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanley PE (1961) Inheritance of shell markings and growth in the hard clam Venus mercenaria. Proc Natl Shellfish Assoc 50:163–169

    Google Scholar 

  • Cui Z, Hui M, Liu Y, Song C, Li X, Li Y, Liu L, Shi G, Wang S, Li F, Zhang X, Liu C, Xiang J, Chu KH (2015) High density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis. Heredity 115:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Zhao L, Chang Y, Zhao W, Du Z, Hao Z (2015) Transcriptome sequencing and characterization of Japanese scallop Patinopecten yessoensis from different shell color lines. PLoS ONE 10:e0116406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon GB, Davies SW, Aglyamova GA, Meyer E, Bay LK, Matz MV (2015) Genomic determinants of coral heat tolerance across latitudes. Science 348:1460–1462

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T (1947) Genetics of natural populations. XIV. A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics 32:142–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas R, Par K (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35

    Article  Google Scholar 

  • Elshire R, Glaubitz J, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO STAT (2016) Food and Agriculture Organization of the United Nations. Statistical Yearbook, Rome

    Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis J (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Dou J, Mao J, Su H, Jiao W, Zhang L, Hu X, Huang X, Wang S, Bao Z (2013) RADtyping: an integrated package for accurate de novo codominant and dominant RAD genotyping in mapping populations. PLoS ONE 8:e79960

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia A, Garcia S, Melchinger A, Zeng Z (2008) QTL mapping and the genetic basis of heterosis in maize and rice. Genetics 180(3): 1707–1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner C, Lonnquist J (1959) Linkage and the degree of dominance of genes controlling quantitative characters in maize. Agron J 51:524–528

    Article  Google Scholar 

  • Gary FN (1980) Genetics of shell color in Mytilus edulisland the association of growth rate with shell color. J Exp Mar Biol Ecol 47:89–94

    Article  Google Scholar 

  • Guo Y, Yuan H, Fang D, Song L, Liu Y, Liu Y, Wu L, Yu J, Li Z, Xu X, Zhang H (2014) An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genom 15:956

    Article  CAS  Google Scholar 

  • Haley C, Knott S (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Huang X, Mao J, Wang C, Bao Z (2013) Genomic characterization of interspecific hybrids between the scallops Argopecten purpuratus and A. irradians irradians. PLoS ONE 8:e62432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Huang X, Sun Y, Mao J, Wang S, Wang C, Bao Z (2015) Molecular genetic analysis of heterosis in interspecific hybrids of Argopecten purpuratus × A. irradians irradians. Genet Mol Res 14:10692–10704

    Article  CAS  PubMed  Google Scholar 

  • Jiao W, Fu X, Dou J, Li H, Su H, Mao J, Yu Q, Zhang L, Hu X, Huang X, Wang Y, Wang S, Bao Z (2013) High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc. DNA Res 21:85–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaeppler SM (2012) Heterosis: many genes, many mechanisms-end the search for an undiscovered unifying theory. ISRN Bot 2012:682824

    Google Scholar 

  • Kim B, Jang S, Chu S, Bordiya Y, Akter M, Lee J, Chin J, Koh H (2014) Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krieger U, Lippman Z, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463

    Article  CAS  PubMed  Google Scholar 

  • Kurasawa Y, Hu H, Zhou Q, Li Z (2018) A trypanosome-specific protein cooperates with the CIF1 protein to promote cytokinesis in Trypanosoma brucei. J Biol Chem 293:10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusterer B, Muminovic J, Utz HF, Piepho H, Barth S, Heckenberger M, Meyer R, Altman T, Melchinger AE (2007) Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175:2009–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layer G, Reichelt J, Jahn D, Heinz DW (2010) Structure and function of enzymes in heme biosynthesis. Protein Sci 19:1137–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Guo X (2004) AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigas Thunberg. Mar Biotechnol 6:26–36

    Article  CAS  Google Scholar 

  • Li X, Schimenti J (2007) Mouse pachytene checkpoint 2 (Trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet 3:e130

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Xiang J, Liu X, Zhang Y, Dong B, Zhang X (2005) Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture 245:63–73

    Article  CAS  Google Scholar 

  • Li H, Liu X, Zhang G (2012) A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians) and its application in size-related QTL analysis. PLoS ONE 7:e46926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun X, Hu X, Xun X, Zhang J, Guo X, Jiao W, Zhang L, Liu W, Wang J, Li J, Sun Y, Miao Y, Zhang X, Cheng T, Xu G, Fu X, Wang Y, Yu X, Huang X et al (2017) Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat Commun 8:1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Liu X, Liu B, Ma B, Liu F, Liu G, Shi Q, Wang C (2018) Draft genome of the Peruvian scallop Argopecten purpuratus. GigaScience 7:giy031

    Google Scholar 

  • Lindberg DR, Pearse JS (1990) Experimental manipulation of shell color and morphology of the limpets Lottia asmi (Middendorff) and Lottia digitalis (Rathke) (Mollusca: Patellogastropoda). J Exp Mar Biol Ecol 140:173–185

    Article  Google Scholar 

  • Liu X, Wu F, Zhao H, Zhang G, Guo X (2009) A novel shell color variant of the Pacific abalone Haliotis discus hannai Ino subject to genetic control and dietary influence. J Shellfish Res 28:419–424

    Article  CAS  Google Scholar 

  • Liu X, Guo L, You J, Liu X, He Y, Yuan J, Liu G, Feng Z (2010) Progress of segregation distortion in genetic mapping of plants. Res J Agron 4:78–83

    Article  Google Scholar 

  • Lowry DB, Hernandez K, Taylor SH, Meyer E, Logan TL, Barry KW, Chapman JA, Rokhsar DS, Schmutz J, Juenger TE (2015) The genetics of divergence and reproductive isolation between ecotypes of Panicum hallii. New Phytol 205:402–414

    Article  PubMed  Google Scholar 

  • Lu Z, Yang A, Wang Q, Liu Z, Zhou L (2006) Assortative fertilization in Chlamys farreri and Patinopecten yessoensis and its implication in scallop hybridization. J Shellfish Res 25:509–514

    Article  Google Scholar 

  • Lyttle T (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Manichaikul A, Moon J, Sen S, Yandell B (2009) A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181:1077–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín A, Fujimoto T, Arai K (2013) Genetic structure of the Peruvian scallop Argopecten purpuratus inferred from mitochondrial and nuclear DNA variation. Mar Genom 31:1–8

    Article  Google Scholar 

  • Miura O, Nishi S, Chiba S (2007) Temperature-related diversity of shell colour in the intertidal gastropod Batillaria. J Mollus Stud 73:235–240

    Article  Google Scholar 

  • Moll R, Lindsey M, Robinson H (1964) Estimates of genetic variances and level of dominance in maize. Genetics 49:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narum S, Buerkle C, Davey J, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newkirk GF (1980) Genetics of shell color in Mytilus edulis L. and the association of growth rate with shell color. J Exp Mar Biol Ecol 47:89–94

    Article  Google Scholar 

  • Ogut F, Bian Y, Bradbury PJ, Holland JB (2015) Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population. Heredity 114:552–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Barrientos D, Reiland J, Hey J, Noor MAF (2002) Recombination and the divergence of hybridizing species. Genetica 116:167–178

    Article  CAS  PubMed  Google Scholar 

  • Ostberg C, Hauser L, Pritchard V, Garza J, Naish K (2013) Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkiibouvieri) and rainbow trout (O. mykiss). BMC Genom 14:570

    Article  Google Scholar 

  • Panithanarak T, Hauffe H, Dallas J, Glover A, Ward R, Searle J (2004) Linkage-dependent gene flow in a house mouse chromosomal hybrid zone. Evolution 58:184–192

    Article  PubMed  Google Scholar 

  • Pauletto M, Carraro L, Babbucci M, Lucchini R, Bargelloni L, Cardazzo B (2016) Extending RAD tag analysis to microbial ecology: a comparison between multi locus sequence typing (MLST) and 2b-RAD to investigate Listeria monocytogenes genetic structure. Mol Ecol Resour 16:823–835

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Baerwald M, Ibarra A, May B (2012) A first-generation linkage map of the Pacific lion-paw scallop (Nodipecten subnodosus): initial evidence of QTL for size traits and markers linked to orange shell color. Aquaculture 350:200–209

    Article  CAS  Google Scholar 

  • Phadnis N, Orr H (2009) A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323:376–379

    Article  CAS  PubMed  Google Scholar 

  • Poland J, Rife T (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    CAS  Google Scholar 

  • Qin Y, Liu X, Zhang H, Zhang G, Guo X (2007a) Identification and mapping of amplified fragment length polymorphism markers linked to shell color in bay scallop, Argopecten irradians irradians (Lamarck, 1819). Mar Biotechnol 9:66–73

    Article  CAS  Google Scholar 

  • Qin Y, Liu X, Zhang H, Zhang G, Guo X (2007b) Genetic mapping of size-related quantitative trait loci (QTL) in the bay scallop (Argopecten irradians) using AFLP and microsatellite markers. Aquaculture 272:281–290

    Article  CAS  Google Scholar 

  • Sastry AN (1963) Reproduction of the bay scallop, Aequipecten irradians Lamarck. Influence of temperature on maturation and spawning. Biol Bull 125:146–153

    Article  Google Scholar 

  • Schwartz D, Laughner W (1969) A molecular basis for heterosis. Science 166:626–627

    Article  CAS  PubMed  Google Scholar 

  • Seetharam AS, Stuart GW (2013) Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ 1:e226

    Article  PubMed  PubMed Central  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang L, Ma L, Wang Y, Su Y, Wang X, Li Y, Abduweli A, Cai S, Liu F, Wang K, Hua J (2016) Main effect QTL with dominance determines heterosis for dynamic plant height in upland cotton. G3(Bethesda) 3:3373–3379

    Article  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Streiff R, Courtois B, Meusnier S, Bourguet D (2014) Genetic mapping of two components of reproductive isolation between two sibling species of moths Ostrinia nubilalis and O. scapulalis. Heredity 112:370–381

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant AH (1917) Genetic factors affecting the strength of linkage in Drosophila. Proc Natl Acad Sci 3:555–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Li Y, Jing J, Mu C, Du H, Dou J, Mao J, Li X, Jiao W, Wang Y, Hu X, Wang S, Wang R, Bao Z (2015) Construction of a high-density genetic map and quantitative trait locus mapping in the sea cucumber Apostichopus japonicus. Sci Rep 5:14852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateswarlu K, Hanada T, Chishti A (2005) Centaurin-α1 interacts directly with kinesin motor protein KIF13B. J Cell Sci 118:2471–2484

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R (2001) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Wada KT, Komaru A (1990) Inheritance of white coloration of the prismatic layer of shells in the Japanese pearl oyster Pincada fucata martensii and its importance in the pearl culture industry. Nippon Suisan Gakkaishi 56:1787–1790

    Article  Google Scholar 

  • Wang Y, Guo X (2004) Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution. Biol Bull 207:247–256

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Guo X (2004) AFLP linkage map of an intraspecific cross in Chlamys farreri. J Shellfish Res 23:491–500

    Google Scholar 

  • Wang L, Song L, Chang Y, Xu W, Ni D, Guo X (2005) A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquacult Res 36:643–653

    Article  CAS  Google Scholar 

  • Wang L, Song L, Zhang H, Gao Q, Guo X (2007) Genetic linkage map of bay scallop, Argopecten irradians irradians (Lamarck 1819). Aquacult Res 38:409–419

    Article  Google Scholar 

  • Wang S, Zhang L, Hu J, Bao Z, Liu Z (2010) Molecular and cellular evidence for biased mitotic gene conversion in hybrid scallop. BMC Evol Biol 10:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Liu B, Li J, Liu S, Li J, Hu L, Fan X, Du H, Fang H (2011) Introduction of the Peruvian scallop and its hybridization with the bay scallop in China. Aquaculture 310:380–387

    Article  Google Scholar 

  • Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu P, Lv J, Li Y, Cheng T, Zhang L, Xia Y, Sun H, Hu X, Bao Z (2016) Serial sequencing of isolength RAD tags for cost-efficient genome-wide profiling of genetic and epigenetic variations. Nat Protoc 11:2189–2200

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, Guo X, Huan P, Dong B, Zhang L, Hu X, Sun X, Wang J, Zhao C, Wang Y, Wang D, Huang X, Wang R, Lv J, Li Y et al (2017) Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 1:0120

    Article  Google Scholar 

  • Wijsman J, Troost K, Fang J, Roncarati A (2019) Global production of marine bivalves. Trends and challenges. In: Smaal A, Ferreira J, Grant J, Petersen J, Strand Ø (eds) Goods and services of marine bivalves. Springer, Cham, pp 7–26

    Chapter  Google Scholar 

  • Williams ST (2017) Molluscan shell colour. Biol Rev 92:1039–1058

    Article  PubMed  Google Scholar 

  • Williams ST, Lockyer AE, Dyal P, Nakano T, Churchill CK, Speiser DI (2017) Colorful seashells: identification of haem pathway genes associated with the synthesis of porphyrin shell color in marine snails. Ecol Evol 7:10379–10397

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler F, Estévez B, Jollán L, Garrido J (2001) Inheritance of the general shell color in the Scallop Argopecten purpuratus (Bivalvia: Pectinidae). J Hered 92:521–525

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Hallauer R (1997) Triple testcross analysis to detect epistasis in maize. Crop Sci 37:763–770

    Article  Google Scholar 

  • Wolff M, Garrido J (1991) Comparative study of growth and survival of two color morphs of the Chilean scallop Argopecten purpuratus Lamarck (1819) in suspended culture. J Shellfish Res 10:47–53

    Google Scholar 

  • Wolff M, Mendo J (2000) Management of the Peruvian bay scallop (Argopecten purpuratus) metapopulation with regard to environmental change. Aquat Conserv 10:117–126

    Article  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley S (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapici N, Kim Y, Ribeiro C, Dickson B (2008) A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:33–37

    Article  PubMed  Google Scholar 

  • Yu S, Li J, Xu C, Tan Y, Gao Y, Li X, Zhang Q, Maroof M (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan A, Hu J, Hu X, Hui M, Wang M, Peng W, Huang X, Wang S, Lu W, Sun C, Bao Z (2009) Construction of microsatellite-based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim Genet 40:821–831

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li L, Wu F, Zhang G (2014) Yield trait improvement of bay scallops following complete diallel crosses between different scallop stocks. Chin J Oceanol Limnol 32:1–7

    Article  Google Scholar 

  • Zhao L, Li Y, Li Y, Yu J, Liao H, Wang S, Lv J, Liang J, Huang X, Bao Z (2017) A genome-wide association study identifies the genomic region associated with shell color in yesso scallop, Patinopecten yessoensis. Mar Biotechnol 19:301–309

    Article  CAS  Google Scholar 

  • Zheng H, Zhang G, Liu X (2005) Comparison of growth and survival of larvae among different shell color stocks of bay scallop Argopecten irradians irradians (Lamarck 1819). Chin J Oceanol Limnol 23:183–188

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Grant support from National Natural Science Foundation of China (U1706203, 31172404 and 31572618), Taishan Scholar Project Fund of Shandong Province of China, and Youth Talent Program Supported by Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018-MFS-T07).

Author information

Authors and Affiliations

Authors

Contributions

SW and CW: conceived and designed the study; JM, ZY, HP, and LY: prepared the materials and constructed the sequencing libraries; JM and QZ: conducted genetic mapping and other data analysis; ZB: advised and coordinated the study. All the authors contributed to manuscript writing, reviewing, and approved the final version for submission.

Corresponding authors

Correspondence to Chunde Wang or Shi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

We declare that all applicable international, national, and/or institutional guidelines for sampling, care, and experimental use of organisms for the study have been followed and all necessary approvals have been obtained.

Additional information

Edited by Xin Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Zeng, Q., Yang, Z. et al. High-resolution linkage and quantitative trait locus mapping using an interspecific cross between Argopecten irradians irradians (♀) and A. purpuratus (♂). Mar Life Sci Technol 2, 123–134 (2020). https://doi.org/10.1007/s42995-020-00029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-020-00029-z

Keywords

Navigation